CS402
|
Let Q And R Be Expressed By Ab*A And (Ba)* Respectively I.E Q={Aa Aba Abba ……}And R={? Ba Baba Bababa…….}..Aba Is The Only Word In Q Which Can Make A Word In R Because The Words In R Don T Contain The
|
Single Letter
|
Double Letter
|
String
|
Null String
|
B
|
CS402
|
The Current In The Wire Is Indicated By 1 And 0 Indicates The Absence Of The Current
|
True
|
False
|
Na
|
Na
|
A
|
CS402
|
The Production Of The Form Non Terminal ? ? Is Said To Be Null Production
|
True
|
False
|
Depends On The Language
|
None Of Given
|
A
|
CS402
|
Considering Fa1 And Fa2 Having 2 States Each. Now Fa1+Fa2 Can Have Maximum __________ Number Of States
|
2
|
3
|
More Than 3
|
None Of Them
|
D
|
CS402
|
To Examine Whether A Certain Fa Accepts Any Words It Is Required To Seek The Paths From __________ State
|
Final To Initial
|
Final To Final
|
Initial To Final
|
Initial To Initial
|
C
|
CS402
|
In Gtg’S There May Exist No Path For A Certain String
|
True
|
False
|
Depends On Alphabet
|
None Of These
|
A
|
CS402
|
Enters In A Specific State But There Is No Way To Leave It Then That Specific State Is Called
|
Dead State
|
Waste Basket
|
Davey John Locker
|
All Of These
|
D
|
CS402
|
L Is A Regular Language So By Kleene S Theorem There Exists An __________
|
Fa
|
Gtg
|
Tg
|
Cnf
|
A
|
CS402
|
In Cfg The Symbols That Can’T Be Replaced By Anything Are Called__________
|
Terminal
|
Non-Terminal
|
Production
|
All Of Given
|
C
|
CS402
|
Let A = {0 1}. The Number Of Possible Strings Of Length ‘N’ That Can Be Formed By The Elements Of The Set A Is
|
N!
|
N^2
|
N^M
|
2^N
|
B
|
CS402
|
For The Given Input It Provides The Boolean Or Output
|
Delay Box
|
And Box
|
Nand Box
|
Or Box
|
D
|
CS402
|
For A Given Input It Provides The Compliment Of Boolean And Output
|
Nand Box
|
Delay Box
|
Or Box
|
And Box
|
A
|
CS402
|
(A + B)*B Is Re For The Language Defined Over S={A B} Having Words Not Ending In A
|
True
|
False
|
Such A Language Is Not Regular
|
None Of These
|
A
|
CS402
|
To Describe The Complement Of A Language It Is Very Important To Describe The ----------- Of That Language Over Which The Language Is Defined
|
String
|
Regular Expression
|
Alphabet
|
Word
|
C
|
CS402
|
The States In Which There Is No Way To Leave After Entry Are Called
|
Davey John Lockers
|
Dead States
|
Waste Baskets
|
All Of The Given Options
|
D
|
CS402
|
If L Is A Regular Language Then According To Kleene Theorem There Exists An
|
Tg
|
Gtg
|
Fa
|
Non Of The Given
|
C
|
CS402
|
The Production Of The Form Nonterminal ?One Nonterminal Is Called The
|
Null Production
|
Null Able Production
|
Unit Production
|
None Of The Given
|
C
|
CS402
|
Which Of The Following States Is Not Part Of Pda
|
Start
|
Accept
|
Wrtite
|
Reject
|
C
|
CS402
|
The Two Regular Expressions Define The
|
Same Language
|
The Two Fas Are Equivalent
|
Both A And B
|
None Of Given
|
C
|
CS402
|
In The Null Production N --> ^ N Is A
|
Terminal
|
Non Terminal
|
Word
|
None Of The Given Options
|
B
|